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Regioselective synthesis of 1,2,4,5-tetrasubstituted pyridines from
Baylis–Hillman adducts via consecutive [3+2+1] annulation protocol
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Abstract

An efficient synthetic method of poly-substituted pyridines was developed. Various poly-substituted pyridines were prepared from the
combination of Baylis–Hillman adducts (3 carbons), activated methylene compounds (2 carbons) and ammonium acetate (1 nitrogen) via
[3+2+1] annulation protocol in good yields, regioselectively.
� 2008 Elsevier Ltd. All rights reserved.
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Poly-substituted pyridines are an important class of
compounds due to their abundance in biologically impor-
tant natural substances and their usefulness as synthetic
intermediates in organic synthesis.1–4 Thus, various
synthetic approaches have been examined and a variety
of efficient and practical methods have been developed.1–4

However, new and efficient synthetic procedures are still
required for the synthesis of poly-substituted pyridines in
a regioselective manner.3

Recently, we reported the synthesis of poly-substituted
pyridine derivatives regioselectively starting from the easily
available Baylis–Hillman adducts by way of [3+1+2] annu-
lation process (Scheme 1).3a The pyridine ring was con-
structed in a consecutive manner: (i) introduction of
tosylamide (one nitrogen source) at the primary position
of the Baylis–Hillman adduct (three carbon source), (ii)
reaction with Michael acceptor (two carbon source) and
the following aldol cyclization and aromatization pro-
cesses.3a Meantime, we imagined the possibility for the con-
struction of pyridine skeleton in a different annulation
protocol, namely [3+2+1] annulation (Scheme 1). As
shown in Scheme 1, the introduction of activated methylene
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compounds 2 at the primary position of Baylis–Hillman
adduct 1 could provide the starting material 3 easily.5 The
reaction of 3 and a suitable ammonia source would provide
the desired 1,2,4,5-tetrasubstituted pyridine compound 4
via the corresponding enamine intermediate.2b,4

Thus, we synthesized 3a by the reaction of Baylis–
Hillman acetate 1a and methyl acetoacetate (2a) in 82%
yield in the presence of K2CO3 in CH3CN at room temper-
ature.5 With this compound 3a in our hand, we examined
the reaction conditions and found that the use of NH4OAc
in acetic acid produced desired pyridine 4a in good yield in
short time (73%, entry 1 in Table 1).6–8 Encouraged by the
results, we synthesized starting materials 3b–h by the reac-
tions of Baylis–Hillman acetates 1a–c and various activated
methylene compounds 2a–f in 63–81% yields as shown in
Table 1.5 The syntheses of poly-substituted pyridines
4b–h were carried out under the same conditions of entry
1 and we obtained the products in good to moderate yields
(52–72%) except compound 4h (entry 8, vide infra). The
reaction mechanism could be explained as the sequential
enamine formation,2b,4,7 cyclization, dehydration and the
following double bond isomerization processes as depicted
in Scheme 1.

As shown in Scheme 2 (entry 8 in Table 1), the reaction
of compound 3h under the same reaction conditions
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Table 1
Synthesis of poly-substituted pyridines
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Entry Substrates Product 3a (%) Product 4b (%) Entry Substrates Product 3a (%) Product 4b (%)

1 1a + 2a
Ph

CO2Me
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O

3a (82)

N

CO2Me

Bn

4a (73)

5 1a + 2e
Ph

SO2Ph

COPh

O
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N

Ph
SO2Ph
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4e (58)c

2 1a + 2b
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3b (78)

N

CO2Et
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6 1a + 2f
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O
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O N
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4f (52)d

O

3 1a + 2c
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O

3c (81)

N
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4c (71)

7 1b + 2a
Ph

CO2Me
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O

3g (81)

N

CO2Me

Bn

4g (65)

4 1a + 2d
Ph

SO2Me

COMe

O

3d (78)

N

SO2Me

Bn

4d (63)

8 1c + 2a

CO2Me

COMe

O

3h (67)

N

CO2Me4h (19)e

a Conditions: compound 1 (1.0 equiv), compound 2 (1.0 equiv), K2CO3 (1.1 equiv), CH3CN, rt, 3–5 h.
b Conditions: compound 3 (1.0 equiv), NH4OAc (3.0 equiv), AcOH, reflux, 1–2 h.
c Reaction time is 15 h.
d Reaction time is 5 h.
e Hexenyl substituted compound 5 was obtained in 54% isolated yield (see Scheme 2).
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produced expected compound 4h in low yield (19%).
Instead, we obtained hexenyl compound 5, which might
be produced via air oxidation9 followed by acid-catalyzed
dehydration, as the major product (54%). As a next step,
we examined the synthesis of 1,2-diarylpyridine compound
4i. Synthesis of starting material 3i was inefficient in
CH3CN; however, we prepared 3i in good yield (77%)
when we used DMF as solvent. With this compound 3i,
we synthesized 1,2-diarylpyridine 4i in high yield (88%)
for 10 h. It is interesting to note that relatively longer reac-
tion time was required for the synthesis of 4e (entry 5), 4f

(entry 6), and 4i (Scheme 3). The lower reactivity in these
cases might be due to the larger steric crowdedness during
the cyclization between enamine and carbonyl moieties.

In summary, we disclosed an efficient synthetic method
of poly-substituted pyridines starting from the Baylis–
Hillman adducts via [3+2+1] annulation protocol in good
yields, regioselectively.10
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